Cambridge Quantum Computing Pioneers Quantum Machine Learning Methods for Reasoning

Scientists at Cambridge Quantum Computing (CQC) have developed methods and demonstrated that quantum machines can learn to infer hidden information from very general probabilistic reasoning models. These methods could improve a broad range of applications, where reasoning in complex systems and quantifying uncertainty are crucial. Examples include medical diagnosis, fault-detection in mission-critical machines, or financial forecasting for investment management.
In this paper published on the pre-print repository arXiv, CQC researchers established that quantum computers can learn to deal with the uncertainty that is typical of real-world scenarios, and which humans can often handle in an intuitive way. The research team has been led by Dr. Marcello Benedetti with co-authors Brian Coyle, Dr. Michael Lubasch, and Dr. Matthias Rosenkranz, and is...