Lack of symmetry in qubits can’t fix errors in quantum computing, but might explain matter/antimatter imbalance

chain picimage.jpgwidth100height100
Newswise — LOS ALAMOS, N.M., Feb. 22, 2021—A team of quantum theorists seeking to cure a basic problem with quantum annealing computers—they have to run at a relatively slow pace to operate properly—found something intriguing instead. While probing how quantum annealers perform when operated faster than desired, the team unexpectedly discovered a new effect that may account for the imbalanced distribution of matter and antimatter in the universe and a novel approach to separating isotopes.“Although our discovery did not the cure the annealing time restriction, it brought a class of new physics problems that can now be studied with quantum annealers without requiring they be too slow,” said Nikolai Sinitsyn, a theoretical physicist at Los Alamos National Laboratory. Sinitsyn is author of the paper published Feb. 19 in Physical Review...

Quantum computing: when ignorance is wanted

new newswise logo square
Newswise — Quantum technologies for computers open up new concepts of preserving the privacy of input and output data of a computation. Scientists from the University of Vienna, the Singapore University of Technology and Design and the Polytechnic University of Milan have shown that optical quantum systems are not only particularly suitable for some quantum computations, but can also effectively encrypt the associated input and output data. This demonstration of a so-called quantum homomorphic encryption of a quantum computation has now been published in "NPJ Quantum Information".Quantum computers promise not only to outperform classical machines in certain important tasks, but also to maintain the privacy of data processing. The secure delegation of computations has been an increasingly important issue since the possibility of utilizing cloud...